INVESTIGADORES UTILIZAN IA PARA DETECTAR MEJOR LOS FACTORES DE RIESGO DE LA DIABETES TIPO 1
La diabetes tipo 1 (DT1) es un trastorno autoinmune que puede afectar a personas de cualquier edad y para la cual actualmente no existe cura. La única esperanza es retrasar o prevenir el inicio de la enfermedad, y aquí es donde la última investigación basada en el aprendizaje automático puede ayudar.
El equipo, compuesto por científicos de
IBM y JDRF, una organización líder en investigación y concientización de la
diabetes tipo 1, y cinco centros de investigación académica en cuatro países
diferentes, acaba de publicar un estudio [LINK].
Publicado en Diabetes Care, es el primer artículo clínico importante
elaborado por esta colaboración sobre la identificación de pacientes con alto
riesgo de contraer la enfermedad. El estudio de inteligencia de datos tipo 1
(T1DI) comprende una gran y única cohorte de pacientes pediátricos a quienes se
les ha dado seguimiento de cerca desde su nacimiento.
El trabajo ha proporcionado información
sobre el desarrollo de biomarcadores asociados con el riesgo de aparición de la
diabetes tipo 1 en niños pequeños. Se cree que los resultados podrían facilitar,
identificando a niños en riesgo para
ensayos clínicos cuyo objetivo es retrasar y posiblemente prevenir la aparición
de la diabetes tipo 1.
Los niños, los más afectados
Se trata de una enfermedad sin cura, con dependencia de la insulina de por vida y posibles complicaciones a largo plazo, como afecciones cardiovasculares, insuficiencia renal y retinopatía diabética, que puede provocar ceguera. La diabetes tipo 1 es un trastorno autoinmune que puede alcanzar a personas de cualquier edad, pero generalmente se diagnostica durante la infancia o la adolescencia. Esta enfermedad generalmente se desarrolla en un plazo de cinco a 15 años, con la pérdida gradual de células beta productoras de insulina en el páncreas.
El equipo de investigación de IBM creó
la cohorte del estudio T1DI, la más grande de su tipo para predictores de
diabetes infantil tipo 1. En asociación con JDRF, que reunió a un equipo de más
de 30 científicos de nueve instituciones en cuatro países, se combinaron datos
de cinco estudios de evolución natural de diabetes tipo 1 dirigidos por esas
instituciones, algunos de los cuales comenzaron hace más de 30 años.
Todos estos estudios se centraron en el desarrollo de la diabetes Tipo 1; sin embargo, el diseño, la duración y los datos recopilados variaban de un estudio a otro. Estos conjuntos de datos incluían mediciones de autoanticuerpos de los islotes, biomarcadores específicos de la diabetes tipo 1 que pueden desarrollarse y mutar con el tiempo. Los biomarcadores son sustancias medibles detectables mediante pruebas de laboratorio u otros mecanismos y que indican la presencia potencial o el riesgo de desarrollar una enfermedad. El término "seroconversión" describe el momento más temprano en el que se detectan estos autoanticuerpos en un análisis de sangre y marca el inicio de la autoinmunidad.
Aprendizaje automático
avanzado, en funcionamiento
Se utilizó métodos estadísticos
y de aprendizaje automático avanzados, y el equipo de investigación desarrolló herramientas
gráficas innovadoras e interactivas. Un documento sobre esas herramientas de
visualización, DPVis, se publicó en
2020 en IEEE Transactions on Visualization and Computer Graphics. otro sobre la
simulación de detección a nivel de población, utilizando la herramienta COOL
(Collaborative Open Outcomes tooL), se presentará en el próximo Simposio Anual
AMIA 2021.
A lo largo de la investigación, se aplicó algoritmos avanzados de aprendizaje automático para identificar los predictores del inicio de la diabetes Tipo 1. También se basó en los resultados de las pruebas de laboratorio recopilados a lo largo del tiempo de de cada participante del estudio, específicamente para los tres autoanticuerpos de islotes asociados con el desarrollo de diabetes tipo 1. El análisis reveló nuevos patrones de desarrollo de autoanticuerpos y sus vínculos con otros factores de riesgo.
Para los niños con múltiples autoanticuerpos (más de un tipo de autoanticuerpo de islotes) en el momento de la seroconversión, el riesgo de desarrollar DT1 es muy alto, alrededor del 90% en un período de 15 años. Además, cuanto menor es la edad a la que los niños desarrollan múltiples autoanticuerpos, mayor es el riesgo, alcanzando su punto máximo entre los dos y los cuatro años de edad. También confirmaron que los genotipos para la diabetes tipo 1 no afectan el riesgo en niños que dan positivo a múltiples autoanticuerpos.
Sin embargo, la investigación también
ha arrojado nueva luz sobre el riesgo de diabetes tipo 1 en niños que dan
positivo a un solo autoanticuerpo. Su riesgo de aparición de diabetes tipo 1 a
15 años es notablemente más bajo, solo alrededor del 30%, especialmente para
los niños con un solo autoanticuerpo en el momento de la seroconversión y los
que permanecen con un solo autoanticuerpo a partir de entonces. Aunque este
riesgo parece sustancial en general, se encontró que su evaluación de riesgo
individual puede mejorarse en función del perfil genético y una prueba de
anticuerpos repetida en aproximadamente dos años.
Estos
hallazgos podrían ayudar a identificar y estratificar a los participantes para
el reclutar en el ensayo según el número de autoanticuerpos y los resultados
genéticos. De manera similar, los resultados podrían ayudar a informar la
detección de rutina, la cadencia de monitoreo y el manejo general de los niños
en riesgo. La detección y la vigilancia basadas en la población generalmente se
realizan para enfermedades para las que se dispone de una cura o un tratamiento
inmediato, lo que aún no es el caso de la diabetes tipo 1. Sin embargo, la
aparición y el diagnóstico inicial de la diabetes tipo 1 a menudo se asocian
con complicaciones potencialmente mortales de la cetoacidosis diabética (CAD),
lo que aumenta la importancia de la detección temprana.
La identificación temprana de los niños
en riesgo podría ayudar a las familias y los cuidadores a comprender mejor el
riesgo y reconocer los primeros signos de CAD para reducir su incidencia al
inicio. Esto es particularmente valioso ya que la investigación ha demostrado
tasas reducidas de CAD en los participantes del estudio que fueron evaluados y
controlados de forma rutinaria para determinar si desarrollaban
autoanticuerpos, al menos en los estudios constituyentes de T1DI.
A la luz de la investigación en curso para retrasar o prevenir la aparición de la diabetes tipo 1, como en el consorcio TrialNet, los hallazgos pueden proporcionar información útil para que los programas de detección realicen una identificación temprana de las personas de alto riesgo como posibles candidatos para tales ensayos. Esto podría beneficiar no solo a los niños que participan, sino también a toda la comunidad de investigación de la diabetes Tipo 1.
Además, esta investigación ha validado importantes
resultados previos de la ADA (American Diabetes Association),
JDRF y Endocrine Society. En 2015, estos hallazgos condujeron a una
propuesta para la estadificación de la diabetes tipo 1 basada en el desarrollo
de la autoinmunidad de los islotes como etapa 1.
*
Haga clic en el siguiente enlace para ver el texto completo: www.research.ibm.com/blog/ai-identifies-t1d-risks
Comentarios
Publicar un comentario
Gracias por tus comentarios, un abrazo.